
CS311 Lecture: Pipelining and Superscalar Architectures

Last revised July 26, 2021
Objectives:

1. To introduce the basic concept of CPU speedup
2. To explain how data and branch hazards arise as a result of pipelining, and

various means by which they can be resolved.
3. To introduce superpipelining, superscalar, and VLIW processors as means to get

further speedup, including techniques for dealing with more complex hazard
conditions that can arise.

 Materials:

1. RTL Handout page 2 (will already have)
2. Pipelined MIPS Simulation; Interlocked MIPS Simulation
3. Handout showing stages
4. Projectables
5. Sample programs: Add 1 to Memory 1000, Forwarding demo RType, Delayed

Load Need Demo, Delayed Load Demo

I. Introduction

A. For any CPU, the total time for the execution of a given program is:

Time = cycle time * # of instructions * CP

= # of instructions * CPI
clock-rate

where: CPI (clocks per instruction) is the average number of clock
cycles needed to execute an instruction

B. This equation suggests three basic strategies for running a given program in
less time: (ASK CLASS TO MAKE SUGGESTIONS FOR EACH)

1. Reduce the cycle time (increase the clock rate)

1

a) Can be achieved by use of improved hardware design/manufacturing
techniques. Two ways this historically has been done:

(1)Reducing the FEATURE SIZE (chip area needed for one
component), results in lower capacitance and inductance, and can
therefore run the chip at a higher frequency.

(2)Reducing the power voltage - from 5 V initially to as little as 1.5V
on some chips, results in lower charge on chip gate capacitors and
can therefore allow running the chip at a higher frequency.

b) Do less computation on each cycle (which increases CPI, of course!)

2. Reduce the instruction count.

a) Better algorithms.

b) More powerful instruction sets - an impetus for the development of
CISCs. (This, however, leads to increased CPI!)

3. Reduce CPI

a) Simplify the instruction set - an impetus for the original
development of RISCs. (This, however, leads to increased
number of instructions needed for a given task!).

b) Do more work per clock. (This, however, requires a longer
clock cycle and leads to a lower clock rate!).

4. In the case of clock rate and instruction count, there are speedup
techniques that are clear "wins" - utilizing them does not adversely
affect the other two components of the equation.

a) Improving the implementation so as to allow a faster clock.

2

However, in the past decode and a half or so we seem to have hit a
plateau in this regard; clock speeds for commodity CPUs have
peaked out around 2-3 GHz with high-end CPUs around 4 GHz- due
in large measure to power/heat dissipation considerations. (Faster
CPU's use more power and produce more heat, and voltage
reductions are limited by the fact that there is about an 0.7 volt drop
across semiconductor PN junctions.)

b) Using more efficient algorithms

However, for many problems we have discovered algorithms
which leaves little room for improvement.

5. In the case of CPI, it appears, that it is only possible to reduce CPI
at the cost of more instructions or a slower clock. However, while
there is no way to reduce the total number of clocks needed for an
individual instruction without adversely impacting some other
component of performance, it is possible to reduce the AVERAGE
CPI by doing portions of two or more instructions in parallel. That
is the topic we look at in the next few lectures.

C. There are several general ways to reduce average CPI

1. If we look at the execution of a single instruction, we typically find that it
stores values into various parts of the system at different times.

a) Example: Look at Multicycle RTL for MIPS - Page 2 of RTL
Handout

PROJECT

(1)When does it store a value into the IR?

ASK

Only on cycle 0

3

(2)When does it store a value into the ALU input registers?

ASK

Only on cycle 1

(3)When does it store a value into the ALU output register?

ASK

Only on cycle 2

(4)When does it store a value into one of the registers in the
register set?

ASK

Only on cycle 3

(5)When does it write memory?

ASK

Only on cycle 3

(6)There is only one thing that can be changed on two different
cycles

ASK

The PC. (We will see how this gets special handling later)

b) We could potentially reduce average CPI by having different
instructions produce values for different registers at the same time -
e.g. on mips one instruction something like the following might be
possible - where S1, S2 .. are successive instructions

4

Load general register S1 S2 S3 S4 S5
or write memory (cycle 3)

Load ALU output S1 S2 S3 S4 S5 ...
(cycle 2)

Load ALU inputs S1 S2 S3 S4 S5 ...
(cycle 1)

Load IR S1 S2 S3 S4 S5 ...
(cycle 0)

PROJECT

c) This is a strategy known as PIPELINING.

2. We might achieve even greater parallelism by replicating portions
of the system - e.g. if it had two ALU’s it could do cycle 2 of two
different instructions at the same time. This leads to various
strategies including VLIW and Superscalar Architectures.

3. We will look at each of these in turn. Later in the course, we will
look at a number of strategies for improving performance by the
use of full parallelism (e.g. multicore CPUs).

II. Pipelining

A. The approach we looked at for MIPS reduces average time per
instruction time by 75% compared to the original scheme.

1. We call this a FULLY PIPELINED CPU. In the steady state, it
completes one instruction on every cycle, so its average CPI is 1.
This is, in fact, what RISC implementations do - and RISC ISAs
are structured to make such an implementation straightforward.

5

2. Of course, an average CPI of 1 is attainable only when the pipeline
is full of valid instructions. If the pipeline must be flushed (as
would be the case whenever a branch is taken in program
execution), it will take several cycles for the pipeline to fill up
again.

3. In more complex situations, full pipelining may not be possible, but
we may be able to pipeline at least parts of instruction execution.

Example: MIPs has a separate pipeline for multiplication, which
inherently involves multiple computational steps. The number of
cycles needed for a multiply varies in different implementations,
but is typically 10 or more.

a) If a single multiply is done, followed immediately by mflo,
processing of instructions will stall for 10 or more cycles until
the operation completes. Thus, the effective cost of the
operation is 10 or more cycles.

b) But if many multiplies in a row are done, they can proceed
through the pipeline in such a way as to make the average time
for a multiply as little as 1 cycle.

B. Rather than discussing an actual MIPS pipeline, which uses both the
rising and falling edge of the clock so that some stages require only half a
clock period, we will discuss a simplified pipeline that is a bit easier to
understand. It has four stages.

C. (Since actual implementations actually used only 3 clocks per instruction
by doing some operations on a half clock, the actual time saving was only
about 66% - but we will not delve into this!)

D.

PROJECT Pipelined MIPS simulation.

DISTRIBUTE HANDOUT of stage structure

6

Note that, though some hardware units appear in more than one stage,
each data path exists in exactly one stage. - but data is written the
register(s) in any given unit (except the PC) only at one cycle.

1. Stage 0 is instruction fetch. This step is, of course, the same for all
instructions since we don’t have the instruction yet, and this stage
actually has no IR of its own.

Each of the remaining stages has an Instruction Register. Stage 0
fetches an instruction into the Stage 1 IR, where execution of it
begins. On each clock, the Stage 1 Instruction is moved to Stage 2
and the Stage 2 instruction is moved to Stage 3.

DEMO: Load “Add 1 to Memory 1000” and clock a few times,
showing how first instruction progresses through the stages.

2. Stage 1 does two things

SHOW Tab

a) For certain instructions (branches, jumps) it updates the PC.
Depending on the Instruction in the Stage 1 IR, this may come
directly from the instruction (J-Format) or by adding the
Immediate field of the instruction to the PC (beq, bne taken) or
by adding 4 to the current PC (most instructions including beq,
bne not taken)

b) It loads values into the ALU holding registers. One value
always comes from the register selected by the rs field of the
Stage 1 instruction. The other either comes from the register
selected by rt or the Immediate field of the Stage 1 instruction.
(A value is always loaded into both registers, even though one
or both may turn out to be unused later)

7

3. Stage 2 performs an ALU operation on the values in the holding
registers (which were put there on the previous clock by Stage 1 of
the instruction) and stores a result into the ALU output register.
What operation is performed is determined by the instruction in the
Stage 2 IR. (Add for load/store; instructions like j, beq, bne don’t
actually need an ALU operation but one is done anyway, though the
result is not used.)

4. Stage 3 stores a result, if appropriate, based on the instruction in the
Stage 3 IR.

a) For R-Type instructions, the ALU output is stored in a register.

b) For load instructions, a memory location is stored in a register.

c) For store instructions, a register is stored in memory

d) For other instructions, nothing happens in this Stage.

5. Thus, four instructions are in the pipeline at any time - one at each
stage. Although it takes up to 4 clock cycles to execute any one
instruction, one instruction is completed on each clock and so the
effective time for an instruction is only one cycle - a fourfold
speedup.

E. However, overlapping instructions can lead to various sorts of hazards
due to inter-instruction dependencies (hazards).

1. One sort of hazard is called a BRANCH HAZARD or CONTROL
HAZARD. It can arise if the current instruction is a jump or branch.

a) In this case, how can we know while the jump or branch
instruction is being executed in Stage 1 whether the next Stage 0
that is happening simultaneously should fetch the next
sequential instruction or the one at the target address? (Indeed,

8

even if the branch is unconditional, how can one know what the
target address is if it involves computation as with relative mode
addressing?)

b) One possibility is to suspend fetching of instructions during
execution of a branch instruction until the outcome is known
and/or the target address is calculated. In the case of full
pipelining, this is sometimes called a PIPELINE BUBBLE or
STALL.

(1)We always increment the PC in Stage 0 at the same time an
instruction is fetched, which means that sometimes we will
fetch the "wrong" instruction in the next Stage 0.

(2)When a jump or branch instruction has been fetched, we
change the instruction that was fetched by the next Stage 0 to
something like a nop which effectively nullifies it.

(a)If the instruction in IR1 is a jump or branch that is taken,
stage 1 puts the correct target address in the PC.

(b)If the instruction is a branch that is not taken, the
incremented PC is left alone.

(c)In either case, the instruction fetched after the nullified
one will be the correct one.

(d)Of course, this has a negative impact on speed,
sometimes called a “branch penalty” - we always use an
extra cycle following a jump or branch.

c) Some CPU’s use some approach for "guessing" which way the
branch will turn out. This is called BRANCH PREDICTION.
How can such a prediction be done?

9

(1)One way to do the prediction is to use the following rule of
thumb: assume that forward conditional branches will not be
taken, and backward conditional branches will be taken.

Why? ASK

- Forward branches typically arise from a construct like

if something ...
common case

else
less common case

- Backward branches typically result from loops - and only
the last time the branch is encountered will it not be taken.

(2)Some machines incorporate bits into the format for branch
instructions whereby the compiler can furnish a hint as to
whether the branch will be taken.

(3)Of course, neither of these techniques would be helpful with
mips, because they can only be applied once it is known that
the instruction will be a branch, and that's too late for Stage 0
of the next instruction that occurs at the same time.

d) Some machines maintain a branch history table which stores the
address from which a given jump or branch instruction was
fetched as well as the calculated target address and an indication
as to whether it was taken the last time it was executed.

(1)When Stage 0 fetches an instruction, if the PC is the same as
the address that occurs in the history table, and the table
indicates that is was unconditional or the branch was taken
the last time it was executed, then the instruction at the
stored target instruction is fetched instead.

10

(2)Of course, if a branch is predicted to be taken and it actually
isn't - or it is predicted that it won't be taken and it actually
is, then the wrongly-fetched instruction will still need to be
nullified - but this will only be the case sometimes, so the
branch penalty will be smaller.

(3)The same problem will arise the first time a jump or branch
instruction is encountered since there is not yet an entry for it
in the history table.

e) Some machines (e.g. early versions of MIPS) always execute
the instruction after the branch instruction, even if the branch is
taken. This is called DELAYED BRANCH.

(This is the reason for the assembler inserting a nop after a
branch instruction. In many cases - as we shall see later - it
turns out to be possible to rearrange instructions in such a way
as to place a useful instruction in this slot)

f) Of course, other control transfer instructions - e.g. j, jal face a
similar problem, even though the branch is always taken, since
the target address must still be computed. Machines (like
MIPS) that use delayed branch typically use this approach for
these instructions as well.

2. With pipelining, an additional complication arises.

a) Suppose we have the sequence of instructions S1, S2 ...;
instruction S2 uses some register as one of its its operands, and
suppose that the result of S1 is stored in this same register - e.g.

S1: addi $1, $0, 0x2a  
S2: add $2, $1, $0  
 

(Clearly, the intention is for S2 to use the value stored by S1)

PROJECT WITH DIAGRAM SHOWING STAGES 

11

 
 

 If S2 loads this register into an ALU input register in its Stage
1, and S1 doesn’t store its result into this register until its Stage
3 (which coincides with S1’s Stage 2) , then the value that S2
uses will be the PREVIOUS VALUE in the register - not the one
stored by S1, as intended by the programmer.
 

This can be seen more clearly in the following

PROJECT Data Hazard due to Registers

Note how, at time 2, S2 uses the value in $1 before S1 stores its
computed value at time 3!

b) This sort of situation is called a DATA HAZARD or DATA
DEPENDENCY.

c) In this particular case, it can be resolved by a strategy called
DATA FORWARDING. Observe that when an RType instruction
is immediately followed by some other instruction that uses its
result, the source value needed by the second instruction is being
computed in the ALU - it just hasn’t yet been placed into the ALU
holding register or ultimately the correct register in the register
file. (In the example, at time 2).

In such a case, the hardware can detect this situation and forward
the value directly from the ALU output to the ALU input register

time 0 time 1 time 2 time 3 time 4
S1: addi $1,
$0, 0x2a

Stage 0:
fetched

Stage 1: put 0
and 42 into
ALU input
registers

Stage 2:
Compute ALU
Output = 0 +
42

Stage 3: Store
42 in $1

S2: addi $2,
$1, $0

Stage 0:
fetched

Stage 1: put
old $1 and $0
into ALU input
registers

Stage 2:
Compute ALU
Output = sum
of inputs

Stage 3: Store
result in $2
(based on old
value in $1)

12

(while also storing it into the output holding register on the next
clock so it is available to future instructions. This produces a
result like the following:

PROJECT Data Hazard due to Registers resolved by Forwarding

Demo: (Using pipelined implementation)

load Forwarding Demo RType.
Be sure r1 contains zero.
clock twice
Note that Stage 1 IR contains rs = $1, and $1 is still zero
Note use of forwarding for rs.
clock again - note correct value loaded into holding register

d) However, this doesn’t work for memory load instructions. A
read from memory is not done until Stage 3 of the pipeline,
which coincides with Stage 1 of the instruction two behind it.
(Stage 2 is used to compute the address of the value to load)

Consider the following program. (Assume memory address
1000 contains 42)

S1: lw $1, 0x1000($0)  
S2: add $2, $1, $0  
 
PROJECT WITH DIAGRAM SHOWING STAGES 
 

time 0 time 1 time 2 time 3 time 4
S1: addi $1,
$0, 0x2a

Stage 0:
fetched

Stage 1: put 0
and 42 into
ALU input
registers

Stage 2:
Compute ALU
Output = 0 +
42

Stage 3: Store
42 in $1

S2: addi $2,
$1, $0

Stage 0:
fetched

Stage 1: put
forwarded 42
and $0 into
ALU input
registers

Stage 2:
Compute ALU
Output = 42 +
0

Stage 3: Store
42 in $2

13

This program executes as follows:

PROJECT Data Hazard Due to Load

Demo: (Using pipelined implementation)

load Delayed Load Need Demo
Be sure r1 contains zero.
clock twice
Note that Stage 1 IR contains rs = $1, and $1 is still zero
Note value has not yet been read from memory.
clock again - note incorrect value loaded into holding register

(1).In such cases, one possible solution is to use an approach
known as DELAYED LOAD: code may not use a register in
the instruction immediately after one that loads it (If an
instruction just after a load does try to use the same register
as a source, something bad happens like it gets the OLD
value.) Our program would need to incorporate a nop as was
done for delayed branch:

S1: lw $1, 0x1000($0)  
S2: nop  
S3: add $2, $1, $0  
 
PROJECT WITH DIAGRAM SHOWING STAGES 

time 0 time 1 time 2 time 3 time 4
S1: lw $1,
1000($0)

Stage 0:
fetched

Stage 1: put 0
and 1000 into
ALU input
registers

Stage 2:
Compute
address = 0 +
1000

Stage 3: Load
$1 with value
at address
1000

S2: addi $2,
$1, $0

Stage 0:
fetched

Stage 1: put
old $1 and $0
into ALU input
registers

Stage 2:
Compute ALU
Output = sum
of inputs

Stage 3: Store
result in $2
(based on old
value in $1)

14

 

(a)This was the approach used by early MIPS
implementations - the instruction immediately after a load
may not use the register that was just loaded.

(b)It appears, from the above, that a delay of 2 cycles would
actually be needed, but this was reduced to 1 by forwarding the
value fetched from memory at time 3 into an ALU input register at
time 1 of the instruction two behind. This produces the following
result

PROJECT Data Hazard due to Load Resolved by Delayed Load
and forwarding

Demo: (Using pipelined implementation)

load Delayed Load Demo
Be sure r1 contains zero.
clock three times
Note that Stage 1 IR contains rs = $1, and $1 is still zero
Note use of forwarding for rs.
clock again - note correct value loaded into holding register

time 0 time 1 time 2 time 3 time 4 time 5
S1: lw $1,
1000($0)

Stage 0:
fetched

Stage 1: put 0
and 1000
into ALU input
registers

Stage 2:
Compute
address = 0 +
1000

Stage 3: Load
$1 with value
at address
1000 (42)

S2: nop Stage 0:
fetched

[Do nothing] [Do nothing] [Do nothing]

S3: addi $2,
$1, $0

Stage 0:
fetched

Stage 1: put
forwarded
value read
(42) and 0
into ALU input
registers

Stage 2:
Compute ALU
Output = 42 +
0

Stage 3: Store
42 in $2

15

(2)Another approach to handle such a situation is variously
known as interlocking, a pipeline stall, or a "bubble".

(a)The hardware can detect the situation where the Stage 2 IR
contains an instruction which will load a value into the same
register as one of the source operands of the instruction in the
Stage 1 IR. (This is a simple comparison between IR field
contents that is easily implemented with just a few gates.)

(b)In such cases, the hardware can replace the instruction in the
Stage 1 IR with a NOP and force Stage 0 to refetch the same
instruction instead of going on to the next, and use forwarding
for the value read from memory. This produces a result like the
following

PROJECT Data Hazard due to Load Resolved by Interlock

Demo: (Using interlocked implementation)

load Delayed Load Need Demo (that didn’t work before).
Be sure r1 contains zero.
clock twice
Note that Stage 1 IR contains rs = $1, and Stage 2 IR rt = $1
Note that PC and Stage 1 IR are locked - i.e. won’t change
on next clock [note values]

time 0 time 1 time 2 time 3 time 4 time 5
S1: lw $1,
1000($0)

Stage 0:
fetched

Stage 1: put 0
and 1000
into ALU input
registers

Stage 2:
Compute
address = 0 +
1000

Stage 3: Load
$1 with value
at address
1000

S2: addi $2,
$1, $0

Stage 0:
fetched

[Changed to
NOP]

[Do nothing] [Do nothing]

S2: addi $2,
$1, $0
(fetched
again)

Stage 1: put
forwarded
value read and
0 into ALU
input registers

Stage 2:
Compute ALU
Output = 42 +
0

Stage 3: Store
42 in $2

16

Note that Stage 2 IR is marked to become a bubble [note
value]
Clock again
Note that PC and IR 1 values are unchanged; IR 2 has
become a nop; but value in IR2 has moved on to IR3
Note use of forwarding for rs.
clock again - note correct value loaded into holding register
Note how value being read from memory is forwarded to
Stage 1 rs
Clock again
Note how correct value (42) has been loaded into first ALU
input register

(c)Of course, interlocking means wasting a clock cycle when
necessary, since the NOP does no useful work - but this is
no more wasteful in terms of execution time than using
delayed load, and the overall program is shorter.

(d)Later MIPS implementations (starting with MIPS ISA III)
avoided the need for delayed load by using interlocking.
(This is ironic, since the name MIPS originally meant
Microprocessor without Interlocked Pipelined Stages!)

F. Because a RISC pipeline is so regular in its operation, the compiler
may be expected to use knowledge about the pipeline ensure correct
code or even to optimize the code it generates.

1. We’ve just noted that one problem faced by pipelined CPU's is data
dependencies that cannot be resolved in the hardware by forwarding.

a) If the CPU uses delayed load, we can require the compiler to
avoid emitting an instruction that uses the result of a load
instruction immediately after that instruction. (The compiler
can either put some other, unrelated instruction in between, or it
can emit a NOP if all else fails.)

17

Example: suppose a programmer writes:

d = a + b + c + 1

This could be translated to the following:

lw $10, a # r10 <- a  
lw $11, b # r11 <- b  
nop # inserted to deal with data hazard  
add $11, $10, $11 # r11 <- a + b  
lw $12, c # r12 <- c  
nop # inserted to deal with data hazard  
add $12, $11, $12 # r12 <- a + b + c  
add $12, $12, 1 # r12 <- a + b + c + 1  
sw d, $12 # d <- a + b + c + 1

b) A “smart” compiler can sometimes eliminate the NOPS by
rearranging the code. For example, the computation of d = a +
b + c + 1 might be done by

lw $10, a # r10 <- a  
lw $11, b # r11 <- b  
lw $12, c # r12 <- c  
add $11, $10, $11 # r11 <- a + b  
add $12, $11, $12 # r12 <- a + b + c  
add $12, $12, 1 # r12 <- a + b + c + 1  
sw $12, d # d <- a + b + c + 1 
 

PROJECT BOTH

c) What if the hardware incorporates interlocks to stall the pipeline
if an attempt is made to use a register that is currently being
loaded, instead of using a delayed load?

(1)Interlocking becomes necessary in cases where the amount of
parallelism in the system makes it unreasonable to require that
the compiler anticipate all eventualities. (For example, this is
the reason why MIPS implementations since MIPS ISA III
have used interlocking, though most earlier MIPS
implementation required the compiler to prevent the problem.)

18

(2)Rearranging code as above will still result in faster
execution, since stalls will not be needed, so a “smart” compiler
may attempt to do so to the extent possible.

2. Another source of potential problems - which we have already
noted - is branch dependencies.

a) The delayed branch approach used by RISCs like mips must be
allowed for by the compiler.

(1)All control transfer instructions (subroutine calls and returns
as well as jumps) take effect AFTER the next instruction in
sequence is executed, so such instructions are often followed
by a nop, as we have seen in lab.

(2)However, a good compiler can often work with this feature of the
hardware by inserting a branch instruction ahead of the last
instruction to be done in the current block of code.

Consider the following example: Suppose we were compiling

if (x == 0)
a = a + 1;

else
a = a - 1;

(With x and a local variables allocated to reside in $15 and $16,
respectively.) This could be translated as

bne $15, $0, else_part # branch if x != 0  
nop  
addi $16, $16, 1 # a = a + 1  
b end_if  
nop  

else_part:  
addi $16, $16, -1 # a = a - 1  

end_if:  

19

 
We could eliminate one nop as follows:

bne $15, $0, else_part # branch if x != 0  
nop  
b end_if  
addi $16, $16, 1 # a = a + 1  

else_part:  
addi $16, $16, -1 # a = a - 1  

end_if:  
 
PROJECT C CODE AND BOTH IMPLEMENTATIONS 

(3)Unfortunately, in this case the first nop cannot be eliminated,
But suppose the original code were

if (x == 0)
a = a + 1;

else
a = a - 1;

b = b + 1;

(With b a local variable in $17)

PROJECT JUST CODE

How would it be possible to translate this code without using
any nops?

ASK

bne $15, $0, else_part # branch if x != 0  
addi $17, $17, 1 # b = b + 1  
b end_if  
addi $16, $16, 1 # a = a + 1  

else_part:  
addi $16, $16, -1 # a = a - 1  

end_if:  
 

PROJECT C CODE AND IMPLEMENTATION

20

G. The potential speedup from pipelining is a function of the number of
stages in the pipeline.

1. For example, suppose that an instruction that would take 4 ns to
execute is implemented using a 4 stage pipeline with each stage
taking 1 ns. Then the speedup gained by pipelining is

w/o pipeline - 1 instruction / 4 ns
with pipeline - 1 instruction / 1 ns 4ns/1ns = 4:1

Now if, instead, we could implement the same instruction using a 5
stage pipeline with each stage taking 0.8 ns, we could get a 5:1
speedup instead.

2. This leads to a desire to make the pipeline consist of as many
stages as possible, each as short as possible. This strategy is known
as SUPERPIPLINING.

a) The basic idea is to break the execution of an instruction into
smaller pieces and use a faster clock, perhaps performing
operations on both the falling and the rising edge of the clock
(i.e. having two pipeline stages per clock.)

b) Of course, the longer the pipeline, the greater the potential
waste of time due to data and branch hazards.

(1)Branch hazards can be reduced by doing the relevant
computations in the earliest possible pipeline stage, or by
using a branch history table (with saved target addresses), or
by reducing the need for branches through a technique
known as predication - to be discussed below.

21

(2)Data hazards, again, may lead to a need to use interlocking
to ensure correct results; with the order of operations in code
driven by minimizing the need for this.

c) Note that superpipelining attempts to maintain CPI at 1 (or as
close as possible) while using a longer pipeline to allow the use
of a faster clock.

H. So far in our discussion, we have assumed that the time for the actual
computation portion of an instruction is a single cycle (the rest of the
steps being used to handle getting the operands and storing the result)
This is realistic for simple operations like AND, fixed point ADD etc.
However, for some instructions multiple cycles are needed for the
actual computation.

1. These include fixed-point multiply and divide and all floating point
operations.

2. To deal with this issue, some pipelined CPU's simply exclude such
instructions from their instruction set - relegating them to co-
processors or special hardware (e.g. MIPS approach).

3. If such long operations are common (as would be true in a machine
dedicated to scientific computations), further parallelism might be
considered in which the computation phases of two or more
instructions overlap. We will not discuss this now, but will come
back to it under vector processors later in the course.

22

III.Moving Beyond Basic Pipelining By Replicating Functional Units

A. It would appear, at first, that a CPI of 1 is as good as we can get - so
there is nothing further that can be done beyond full pipelining to
reduce CPI. Actually, though, we can get CPI less than one if we
execute two or more instructions fully in parallel (i.e. fetch them at the
same time, do each of their steps at the same time, etc) by duplicating
major portions of the instruction execution hardware.

1. If we can start 2 instructions at the same time and finish them at the
same time, we complete 2 instructions per clock, so average CPI
drops to 0.5. If we can do 4 at a time, average CPI drops to 0.25.

2. In describing architectures like this, the term ISSUE is used for
starting an instruction and RETIRE is used for completing an
instruction.

a) Because not all instructions require the same number of clock
cycles, a system may actually retire a greater or lesser number
of instructions on any clock than it issues on that clock, but the
average number of issues/retires per clock will be the same.

b) Various hazards make it impossible to always achieve the
maximum degree of parallelism. Thus, in some cases the
machine will issue fewer instructions on a clock than it
potentially could (perhaps even zero). When an instruction is
not issued on some clock due to a hazard, it is held until the next
clock, when an attempt is made again to issue it.

3. Multiple issue is facilitated by taking advantage of the fact that
many CPU's have separate execution units for executing different
types of instructions - e.g. there may be:

a) An integer execution unit used for executing integer instructions
like add, bitwise or, shift etc.

23

b) A floating point execution unit for executing floating point
arithmetic instructions. (Note that many architectures use
separate integer and floating point register sets).

c) A branch execution unit used for executing branch instructions.
 

(etc)

d) If two instructions need two different execution units (e.g. if one
is an integer instruction and one is floating point) then they can
be issued simultaneously and execute totally in parallel with
each other, without needing to replicate execution hardware
(though decode and issue hardware does need to be replicated.)
 

Note that, for example, many scientific programs contain a
mixture of floating point operations (that do the bulk of the
actual computation), integer operations (used for subscripting
arrays of floating point values and for loop control), and branch
instructions (for loops). For such programs, issuing multiple
instructions at the same time becomes very feasible.

4. The earliest scheme used for doing this was the VERY LONG
INSTRUCTION WORD architecture. In this architecture, a single
instruction specifies more than one operation to be performed - in fact,
it can specify one operation for each execution unit on the machine.

a) The instruction contains one group of fields for each type of
instruction - e.g. one to specify an integer operation, one to
specify a floating point operation, etc.

b) If it is not possible to find operations that can be done at the
same time for all functional units, then the instruction may
contain a NOP in the group of fields for unneeded units.

24

c) The VLIW architecture requires the compiler to be very
knowledgeable of implementation details of the target computer,
and could require a program to be recompiled if moved to a
different implementation of the same architecture.

d) Because most instruction words contain some NOP's, VLIW
programs tend to be long.

e) A more recent implementation of this strategy, called EPIC
(explicitly parallel instruction computing) was used in the
Itanium architecture jointly developed by Intel and Hewlett
Packard and intended for high-performance systems such as
servers. (This particular ISA was dropped by Intel in 2019 but
the ideas are still interesting and are used elsewhere.)

f) Though VLIW is not used in general purpose computers, it is a
common technique used in digital signal processors.

5. Most CPU’s today use a somewhat similar approach known as
SUPERSCALAR architecture.

a) A superscalar CPU fetches groups of instructions at a time -
typically two (64 bits) or four (128 bits) and decodes them in
parallel.

b) That is, a superscalar CPU has just one instruction fetch unit,
but it fetches a whole group of instructions, but it has 2 or 4
decode units and a number of different execution units.

c) The instructions can be of any type (integer, floating point,
branch, etc.) If the instructions fetched together need different
execution units, then they are issued at the same time. If two
instructions need the same execution unit, then only the first is
issued; the second is issued on the next clock. (This is called a
STRUCTURAL HAZARD).

25

d) To reduce the number of structural hazards that occur, some
superscalar CPU's have two or more integer execution units,
along with a branch unit and a floating point unit, since integer
operations are more frequent. Or, they might have a unit that
handles integer multiply and divide and one that does add and
subtract.

e) The hardware rather than the compiler deals with the various
kinds of hazards inherent in this, so the compiler does not need
to be aware of the configuration of the target computer.

6. Once again, the issue of data and branch hazards becomes more
complicated when multiple instructions are issued at once, since an
instruction cannot depend on the results of any instruction issued at
the same time, nor on the results of any instruction issued on the
next one or more clocks. With multiple instructions issued per
clock, this increases the potential for interaction between
instructions, of course.

a) Example: If a CPU issues 4 instructions per clock, then up to
seven instructions following a branch might be in the pipeline
by the time the branch instruction finishes computing its target
address. (If it is the first of a group of 4, plus a second group of
4.)

b) Example: If a CPU issues 4 instructions per clock, then there
may need to be a delay of up to seven instructions before one
can use the result of a load instruction, even with data
forwarding as described above.

B. Dealing with Hazards on a Superscalar Machine

1. Data hazards

26

a) We have previously seen how data forwarding can be used to
eliminate data hazards between successive instructions where one
instruction uses a result computed by an immediately-preceding one.
However, if "producer" and "consumer" instruction are executed
simultaneously in different execution units, forwarding no longer
helps. Likewise, the unavoidable one cycle delay needed by a load
could effect many successive instructions.

b) Superscalar machines typically incorporate hardware interlocks
to prevent data hazards from leading to wrong results. When an
instruction that will store a value into a particular register is
issued, a lock bit is set for that register that is not cleared until
the value is actually stored - typically several cycles later. An
instruction that uses a locked register as a data input is not
issued until the register(s) it needs is/are unlocked.

c) Further refinements on this include a provision that allows the
hardware to schedule instructions dynamically, so that a "later"
instruction that does not depend on a currently executing
instruction might be issued after an "earlier" instruction that
does. (This is called OUT OF ORDER EXECUTION.) Of
course, the hardware that does this must avoid reordering
instructions in such a way as to change the meaning of the
program [e.g. interchanging two instructions that both store a
value in the same place, since the final store is the one that
“sticks”]

2. Branch hazards

a) Stalling the pipeline until the outcome of a conditional branch is
known is one possible solution - but it can get expensive, since
quite a number of instructions could be issued in the time it
takes a conditional branch instruction to get to the point where
its outcome is known.

27

b) Another way to deal with branch hazards is to use branch
prediction to speculatively issue several instructions before the
outcome of a conditional branch is known.

(1)A branch history table can be be used to “remember” the
target address of branch instructions to allow moving down
the “branch taken” path if this is the predicted outcome.
(Otherwise, the pipeline would have to stall if branch taken
is predicted.)

(Since the target address of a branch instruction is generally
computed by PC + displacement in instruction, a given
branch instruction will always point to the same target.)

(2)If a prediction turns out to be wrong, the pipeline is flushed
and quite a bit of work may have to discarded. (However,
the loss is no greater than if the CPU had stalled until the
branch outcome is known).

(3)In any case, though, prediction requires the ability to reach a
definitive decision about whether the branch is going to be
taken before any following instructions have stored any
values into memory or registers.

c) An alternative to branch prediction is called PREDICATION. In this
strategy, the CPU includes a number of one bit predicate registers that
can be set by conditional instructions. The instruction format includes
a number of bits that allow execution of an instruction to be
contingent on a particular predicate register being true (or false).
Further, a predicated instruction can begin executing before the value
of its predicate is actually known, as long as the value becomes known
before the instruction needs to store its result. At that point, if the
predicate is false, the storage of the instruction’s result is inhibited.

28

(1)This can eliminate the need for a lot of branch instructions.

Example:

if r10 = r11 then
r9 = r9 + 1

else
r9 = r9 - 1

Would be translated on MIPS as:

bneq $10, $11, else  
nop # Branch delay slot  
br endif  
addi $9, $9, 1 # In branch delay slot else:  
addi $9, $9, -1  

endif:  
 

Which is 5 instructions long and needs 4 clocks if $10 = $11 and 3
if not.

But on a machine with predication as:

set predicate register 1 true if $10 = $11  
(if predicate register 1 is true) addi $9, $9, 1  
(if predicate register 1 is false) addi $9, $9, -1 
 

Which is 3 instructions long (all of which can be done in parallel,
provided the set predicate instruction sets the predicate register
earlier in its execution than the other two store their results.)

(2)Among contemporary architectures, the ARM architecture uses
predication.

C. Advanced CPU's use both superpiplining and superscalar techniques.
The benefits that can be achieved are, of course, dependent on the
ability of the compiler to arrange instructions in the program so that
when one instruction depends upon another it occurs enough later in
the program to prevent hazards from stalling execution and wasting
the speedup that could otherwise be attained.

29

